A machine tool is a machine, typically powered other than by human muscle (e.g., electrically, hydraulically, or via line shaft), used to make manufactured parts (components) in various ways that include cutting or certain other kinds of deformation. All machine tools involve some kind of fundamental constraining and guiding of movement provided by the parts of the machine, such that the relative movement between workpiece and cutting tool (which is called the toolpath) is controlled or constrained by the machine to at least some extent, rather than being entirely "offhand" or "freehand". Machine tools archetypically perform conventional machining or grinding on metal (that is, metal cutting by shear deformation, producing swarf), but the definition can no longer be limited to those elements, if it ever could, because other processes than machining may apply, and other workpiece materials than metal are common. The precise definition of the term varies among users, as detailed in the "Nomenclature and key concepts" section. It is safe to say that all machine tools are "machines that help people to make things", although not all factory machines are machine tools.
Nomenclature and key concepts, interrelated
Many historians of technology consider that true machine tools were born when the toolpath first became guided by the machine itself in some way, at least to some extent, so that direct, freehand human guidance of the toolpath (with hands, feet, or mouth) was no longer the only guidance used in the cutting or forming process. In this view of the definition, the term, arising at a time when all tools up till then had been hand tools, simply provided a label for "tools that were machines [instead of hand tools]". Early lathes, those prior to the late medieval period, and modern woodworking lathes and potter's wheels may or may not fall under this definition, depending on how one views the headstock spindle itself; but the earliest lathe with direct mechanical control of the cutting tool's path was a screw-cutting lathe dating to about 1483. This lathe "produced screw threads out of wood and employed a true compound slide rest".
The mechanical toolpath guidance grew out of any of various root concepts:
First is the spindle concept itself, which constraints workpiece or tool movement to rotation around a fixed axis. This ancient concept predates machine tools per se; the earliest lathes and potter's wheels incorporated it for the workpiece, but the movement of the tool itself on these machines was entirely freehand.
The machine slide, which has many forms, such as dovetail ways, box ways, or cylindrical column ways. Machine slides constrain tool or workpiece movement linearly. If a stop is added, the length of the line can also be accurately controlled. (Machine slides are essentially a subset of linear bearings, although the language used to classify these various machine elements includes connotative boundaries; some users in some contexts would contradistinguish elements in ways that others might not.)
Tracing, which involves following the contours of a model or template and transferring the resulting motion to the toolpath.
Cam operation, which is related in principle to tracing but can be a step or two removed from the traced element's matching the reproduced element's final shape. For example, several cams, no one of which directly matches the desired output shape, can actuate several vectors of the toolpath.
Abstractly programmable toolpath guidance began with mechanical solutions, such as in musical box cams and Jacquard looms. The convergence of programmable mechanical control with machine tool toolpath control was delayed many decades, in part because the programmable control methods of musical boxes and looms lacked the rigidity for machine tool toolpaths. Later, electromechanical solutions (such as servos) and soon electronic solutions (including computers) were added, leading to numerical control and computer numerical control.
When considering the difference between freehand toolpaths and machine-constrained toolpaths, the concepts of accuracy and precision, efficiency, and productivity become important in understanding why the machine-constrained option adds value. After all, humans are generally quite talented in their freehand movements; the drawings, paintings, and sculptures of artists such as Michelangelo or Leonardo da Vinci, and of countless other talented people, show that human freehand toolpath has great potential. The value that machine tools added to these human talents is in the areas of rigidity (constraining the toolpath despite thousands of newtons (pounds) of force fighting against the constraint), accuracy and precision, efficiency, and productivity. With a machine tool, toolpaths that no human muscle could constrain can be constrained; and toolpaths that are technically possible with freehand methods, but would require tremendous time and skill to execute, can instead be executed quickly and easily, even by people with little freehand talent (because the machine takes care of it). The latter aspect of machine tools is often referred to by historians of technology as "building the skill into the tool", in contrast to the toolpath-constraining skill being in the person who wields the tool. As an example, it is physically possible to make interchangeable screws, bolts, and nuts entirely with freehand toolpaths. But it is economically practical to make them only with machine tools.
In the 1930s, the U.S. National Bureau of Economic Research (NBER) referenced the definition of a machine tool as "any machine operating by other than hand power which employs a tool to work on metal".
The narrowest colloquial sense of the term reserves it only for machines that perform metal cutting—in other words, the many kinds of machining and grinding. These processes are a type of deformation that produces swarf. However, economists use a slightly broader sense that also includes metal deformation of other types that squeeze the metal into shape without cutting off swarf, such as rolling, stamping with dies, shearing, swaging, riveting, and others. Thus presses are usually included in the economic definition of machine tools. For example, this is the breadth of definition used by Max Holland in his history of Burgmaster and Houdaille, which is also a history of the machine tool industry in general from the 1940s through the 1980s; he was reflecting the sense of the term used by Houdaille itself and other firms in the industry. Many reports on machine tool export and import and similar economic topics use this broader definition.
The colloquial sense implying metal cutting is also growing obsolete because of changing technology over the decades. The many more recently developed processes labeled "machining", such as electrical discharge machining, electrochemical machining, electron beam machining, photochemical machining, and ultrasonic machining, or even plasma cutting and water jet cutting, are often performed by machines that could most logically be called machine tools. In addition, some of the newly developed additive manufacturing processes, which are not about cutting away material but rather about adding it, are done by machines that are likely to end up labeled, in some cases, as machine tools.
The natural language use of the terms varies, with subtle connotative boundaries. Many speakers resist using the term "machine tool" to refer to woodworking machinery (joiners, table saws, routing stations, and so on), but it is difficult to maintain any true logical dividing line, and therefore many speakers are fine with a broad definition. It is common to hear machinists refer to their machine tools simply as "machines". Usually the mass noun "machinery" encompasses them, but sometimes it is used to imply only those machines that are being excluded from the definition of "machine tool". This is why the machines in a food-processing plant, such as conveyors, mixers, vessels, dividers, and so on, may be labeled "machinery", while the machines in the factory's tool and die department are instead called "machine tools" in contradistinction. As for the 1930s NBER definition quoted above, one could argue that its specificity to metal is obsolete, as it is quite common today for particular lathes, milling machines, and machining centers (definitely machine tools) to work exclusively on plastic cutting jobs throughout their whole working lifespan. Thus the NBER definition above could be expanded to say "which employs a tool to work on metal or other materials of high hardness". And its specificity to "operating by other than hand power" is also problematic, as machine tools can be powered by people if appropriately set up, such as with a treadle (for a lathe) or a hand lever (for a shaper). Hand-powered shapers are clearly "the 'same thing' as shapers with electric motors except smaller", and it is trivial to power a micro lathe with a hand-cranked belt pulley instead of an electric motor. Thus one can question whether power source is truly a key distinguishing concept; but for economics purposes, the NBER's definition made sense, because most of the commercial value of the existence of machine tools comes about via those that are powered by electricity, hydraulics, and so on. Such are the vagaries of natural language and controlled vocabulary, both of which have their places in the business world.
Nomenclature and key concepts, interrelated
Many historians of technology consider that true machine tools were born when the toolpath first became guided by the machine itself in some way, at least to some extent, so that direct, freehand human guidance of the toolpath (with hands, feet, or mouth) was no longer the only guidance used in the cutting or forming process. In this view of the definition, the term, arising at a time when all tools up till then had been hand tools, simply provided a label for "tools that were machines [instead of hand tools]". Early lathes, those prior to the late medieval period, and modern woodworking lathes and potter's wheels may or may not fall under this definition, depending on how one views the headstock spindle itself; but the earliest lathe with direct mechanical control of the cutting tool's path was a screw-cutting lathe dating to about 1483. This lathe "produced screw threads out of wood and employed a true compound slide rest".
The mechanical toolpath guidance grew out of any of various root concepts:
First is the spindle concept itself, which constraints workpiece or tool movement to rotation around a fixed axis. This ancient concept predates machine tools per se; the earliest lathes and potter's wheels incorporated it for the workpiece, but the movement of the tool itself on these machines was entirely freehand.
The machine slide, which has many forms, such as dovetail ways, box ways, or cylindrical column ways. Machine slides constrain tool or workpiece movement linearly. If a stop is added, the length of the line can also be accurately controlled. (Machine slides are essentially a subset of linear bearings, although the language used to classify these various machine elements includes connotative boundaries; some users in some contexts would contradistinguish elements in ways that others might not.)
Tracing, which involves following the contours of a model or template and transferring the resulting motion to the toolpath.
Cam operation, which is related in principle to tracing but can be a step or two removed from the traced element's matching the reproduced element's final shape. For example, several cams, no one of which directly matches the desired output shape, can actuate several vectors of the toolpath.
Abstractly programmable toolpath guidance began with mechanical solutions, such as in musical box cams and Jacquard looms. The convergence of programmable mechanical control with machine tool toolpath control was delayed many decades, in part because the programmable control methods of musical boxes and looms lacked the rigidity for machine tool toolpaths. Later, electromechanical solutions (such as servos) and soon electronic solutions (including computers) were added, leading to numerical control and computer numerical control.
When considering the difference between freehand toolpaths and machine-constrained toolpaths, the concepts of accuracy and precision, efficiency, and productivity become important in understanding why the machine-constrained option adds value. After all, humans are generally quite talented in their freehand movements; the drawings, paintings, and sculptures of artists such as Michelangelo or Leonardo da Vinci, and of countless other talented people, show that human freehand toolpath has great potential. The value that machine tools added to these human talents is in the areas of rigidity (constraining the toolpath despite thousands of newtons (pounds) of force fighting against the constraint), accuracy and precision, efficiency, and productivity. With a machine tool, toolpaths that no human muscle could constrain can be constrained; and toolpaths that are technically possible with freehand methods, but would require tremendous time and skill to execute, can instead be executed quickly and easily, even by people with little freehand talent (because the machine takes care of it). The latter aspect of machine tools is often referred to by historians of technology as "building the skill into the tool", in contrast to the toolpath-constraining skill being in the person who wields the tool. As an example, it is physically possible to make interchangeable screws, bolts, and nuts entirely with freehand toolpaths. But it is economically practical to make them only with machine tools.
In the 1930s, the U.S. National Bureau of Economic Research (NBER) referenced the definition of a machine tool as "any machine operating by other than hand power which employs a tool to work on metal".
The narrowest colloquial sense of the term reserves it only for machines that perform metal cutting—in other words, the many kinds of machining and grinding. These processes are a type of deformation that produces swarf. However, economists use a slightly broader sense that also includes metal deformation of other types that squeeze the metal into shape without cutting off swarf, such as rolling, stamping with dies, shearing, swaging, riveting, and others. Thus presses are usually included in the economic definition of machine tools. For example, this is the breadth of definition used by Max Holland in his history of Burgmaster and Houdaille, which is also a history of the machine tool industry in general from the 1940s through the 1980s; he was reflecting the sense of the term used by Houdaille itself and other firms in the industry. Many reports on machine tool export and import and similar economic topics use this broader definition.
The colloquial sense implying metal cutting is also growing obsolete because of changing technology over the decades. The many more recently developed processes labeled "machining", such as electrical discharge machining, electrochemical machining, electron beam machining, photochemical machining, and ultrasonic machining, or even plasma cutting and water jet cutting, are often performed by machines that could most logically be called machine tools. In addition, some of the newly developed additive manufacturing processes, which are not about cutting away material but rather about adding it, are done by machines that are likely to end up labeled, in some cases, as machine tools.
The natural language use of the terms varies, with subtle connotative boundaries. Many speakers resist using the term "machine tool" to refer to woodworking machinery (joiners, table saws, routing stations, and so on), but it is difficult to maintain any true logical dividing line, and therefore many speakers are fine with a broad definition. It is common to hear machinists refer to their machine tools simply as "machines". Usually the mass noun "machinery" encompasses them, but sometimes it is used to imply only those machines that are being excluded from the definition of "machine tool". This is why the machines in a food-processing plant, such as conveyors, mixers, vessels, dividers, and so on, may be labeled "machinery", while the machines in the factory's tool and die department are instead called "machine tools" in contradistinction. As for the 1930s NBER definition quoted above, one could argue that its specificity to metal is obsolete, as it is quite common today for particular lathes, milling machines, and machining centers (definitely machine tools) to work exclusively on plastic cutting jobs throughout their whole working lifespan. Thus the NBER definition above could be expanded to say "which employs a tool to work on metal or other materials of high hardness". And its specificity to "operating by other than hand power" is also problematic, as machine tools can be powered by people if appropriately set up, such as with a treadle (for a lathe) or a hand lever (for a shaper). Hand-powered shapers are clearly "the 'same thing' as shapers with electric motors except smaller", and it is trivial to power a micro lathe with a hand-cranked belt pulley instead of an electric motor. Thus one can question whether power source is truly a key distinguishing concept; but for economics purposes, the NBER's definition made sense, because most of the commercial value of the existence of machine tools comes about via those that are powered by electricity, hydraulics, and so on. Such are the vagaries of natural language and controlled vocabulary, both of which have their places in the business world.
No comments:
Post a Comment